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Abstract

A dominant explanation in large-scale mathematics and science studies is that opportunity
to learn (OTL), defined as the curriculum actually made available to learners in the
classroom, has a powerful effect on learner achievement. Measures for establishing
descriptions of students’ opportunity to learn identifiable in the literature include the notion
of ‘curricular coherence’. Research suggests learners learn mathematics more readily if
topics and sub-topics are presented to them in ways that are conceptually connected over
the school year/s. This article offers an emerging methodology for collecting and analysing
data, across multiple classrooms, on the order in which teachers cover mathematics topics
over one academic school year. The methodology outlined in the article was developed to
assess within grade curricular coherence in 38 grade 6 mathematics classrooms across a
sample of 24 randomly selected schools serving low income communities in the Cape
Peninsula of the Western Cape Province, South Africa. The analysis of data on the
sequencing of curricular content over the school year showed that, when the sample of
teachers exercised their own judgment in deciding on the order in which to cover
mathematics content across the school year, most teachers did not present learners with a
coherent programme of learning ‘in the disciplinary sense’ (Schmidt,Wang and McKnight,
2005). The article considers some implications for mathematics teacher education and
professional development.

Curricular coherence as a dimension of opportunity to

learn

Large-scale cross-national and national studies have shown a positive
association between opportunity to learn and learner achievement (Rosenshine
and Berliner, 1978; Berliner, 1978; Heyneman and Loxley, 1983; Brophy and
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Good, 1986; Smith, Smith and Bryk, 1998; Reynolds and Creemers, 1990;
Wang, 1998; Schmidt, McKnight, Houang, Wang, Wiley, Cogan and Wolfe,
2001; Porter and Smithson, 2001; Reynolds, Creemers, Stringfield, Teddlie,
and Schaffer, 2002; Schmidt, Houang and Cogan, 2002; Rowan, Correnti and
Miller, 2002; Hiebert and Grouws, 2007; Gillies and Quijada, 2008; Carnoy,
Chisholm et al., 2011a). Measures for establishing descriptions of learners’
opportunity to learn the curriculum include ‘content coverage’, defined as
learners’ exposure to the content that is expected to be learned; ‘content
exposure’, defined as the amount of time spent on the curriculum contents;
and ‘curricular pacing’, defined as the pace at which learners progress
through the curriculum within and across successive grades. These dimensions 

of opportunity to learn (OTL) are associated in the literature with helping to
ensure that learners have the pre-requisite content knowledge for the next year
of schooling and preventing a cumulative deficit in subject knowledge (Smith
et al., 1998).

Some studies (for example, Carroll, 1963; Schmidt, Jorde, Cogan, Barrier,
Gonzalo, Moser, Shimizu, Sawada, Valverde, McKnight, Prawat, Wiley,
Raizen and Britton , 1996; Stevens, 1996; Schmidt et al, 2002; Schmidt et al,
2005) also stress the importance for student learning of ‘curricular
coherence’, defined in the literature as the extent to which curriculum topics
and sub-topics are logically connected as they are introduced and presented to
learners within lessons, within each grade year, and across different grades.
For example, Schmidt et al. (1996) in their investigation of mathematics and
science teaching in six of the countries that participated in the Third
International Mathematics and Science Study (TIMSS), considered the
coherence with which topics or sub-topics were developed and sequenced both
within and across lessons. 

South Africa’s recently drafted Curriculum and Assessment Policy Statements
(CAPS) for mathematics (DoBE, 2011) (to be implemented from 2012)
provide teachers with sequenced mathematics content topics to be taught in
each term. While a criticism of this move is that this level of specificity
undermines teachers’ professional autonomy, we do not have much hard data
in the South African context, about what happens when teachers exercise their
own judgment in deciding on the order in which to cover mathematics content
across the school year. There is also a dearth of research on the within grade
curricular coherence dimension of learners’ opportunity to learn in practice in
South Africa.
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This article examines the sequencing of teachers’ coverage of mathematics
topics over a single academic school year at a time when there was no
specification in official curriculum documents and teachers were expected to
exercise their own judgment. According to Posner and Strike (1976)

Content sequences are part of the overall content structure. Content structure refers to the

content elements and the ordering relationships that exist between them. . . Most questions

about content structure can be reduced to questions concerning what content comes before

what other content and the rationale for that order (i.e. the sequencing principle, or more

precisely, the ordering relations) (p.666, authors’ italics).

In this article, the term ‘curricular coherence’ refers to “the degree to which
domain-specific or disciplinary content is systematically presented to learners
in terms of the conceptual coherence of its organization” (Reeves and Muller,
2005, p.107). In the next section we explain why we use a conception of
curricular coherence that draws on the notion of curricular coherence as
adherence to the underlying structure in a discipline (Posner and Strike, 1976;
Schmidt et al., 2005).

Curricular coherence in the disciplinary sense

According to Schmidt et al. (2005, p.529) a teacher’s ordering of curriculum
topics is coherent if it is articulated “as a sequence of topics and performances
consistent with the logical and, if appropriate, hierarchical nature of the
disciplinary content from which the subject-matter derives”. In other words,
these and other researchers assert that the sequencing or ordering of topic
coverage in a school subject should be “logically consistent” with the nature
of the foundational discipline, and “reflect the inherent structure of the
discipline” (Schmidt et al., 2005, p.528).

The theoretical work of the British sociologist, Basil Bernstein draws attention
to the nature of subject-specific discourses, “the internal principles of their
construction and their social base” (Bernstein, 2000, p.155). In his theorisation
of forms of knowledge and knowledge structure, Bernstein (1999, 2000)
distinguishes, firstly, between horizontal discourses (everyday or common
sense knowledge) and vertical discourses (academic knowledge). In
Bernstein’s theorisation, the discourse of the academic domain mathematics
has to be re-contextualised or re-interpreted as the school subject,
mathematics. It is this re-contextualisation which codifies and separates or
creates a boundary between curricular school knowledge and non-codified
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everyday knowledge. However, not all specialised academic knowledge
structures take the same form. 

Bernstein (1999; 2000) distinguishes between two forms of knowledge
structures within academic discourses. Some specialised knowledge structures,
as in the sciences, are hierarchically organised in terms of principles of
‘conceptual coherence’ so that each level of meaning is conceptually related to
the next level (Review Committee, 2000 in Muller, 2001). Other specialised
knowledge structures, as in the social sciences, are organised around principles
of ‘connective coherence’ (Muller, 2001) and take the form of a ‘horizontal’
series of specialised language . Vertical discourses also vary in terms of the
strength of their grammars or conceptual syntax.

Curricular coherence in the field of school

mathematics

The school subject mathematics is, in Bernstein’s terms, a ‘singular’ which
draws on a relatively vertical knowledge structure with a strong conceptual
grammar. It is these features that make it relatively easier to explicate the
conceptual ordering of curricular knowledge across various grades for the
school subject mathematics than it is for some other school subjects such as art
(Muller, 2007). 

Schmidt et al. (2005, p.529) demonstrate how a lack of curricular coherence in
school mathematics is evident in the disruption of the “hierarchical aspects of
the discipline” when topics are not sequenced to reflect the logical structure of
the foundational discipline. They show how such a lack of coherence can
reveal itself through “the introduction of a topic before the pre-requisite
knowledge that makes a reasonable understanding of the topic possible”
(Schmidt et al., 2005, p.529). Examples of forms of ‘curricular incoherence’
in mathematics that these authors provide include: the “placing the coverage
of percentage before the coverage of common fractions” (Schmidt et al., 2005,
p.529); or “coverage of the properties of whole numbers (such as the
commutative and distributive properties) at 1  grade, at the same time as theyst

are beginning to study the basic operations” (Schmidt et al., 2005, pp.541–2). 
However, as Schmidt et al. (2005) and Muller (2007) point out, some
curriculum topics are not explicitly hierarchical, even in mathematics. Some
content topics are developed through repeated exposure at different times. In
other words, the same mathematics topic may remain in the curriculum and be
covered at fairly elementary levels that evolve into different levels of
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complexity or deeper levels of understanding over time (Bruner, 1960). They
may receive attention at different times over the school year, or at different
grade levels. Other mathematics topics provide reference points or forms of
continuity that support or ‘buttress’ the overall coherence of the curriculum,
both within a grade and across grades. For these and other reasons the
structure of the overall school mathematics curriculum, or a programme of
learning over a single school year, “even in an area that is largely
hierarchical”, ideally takes the form of ‘a web’ or network, “in which the
inter-connections become a critical part of the hierarchical structure” (Schmidt
et al., 2005, p.528).

Curricular coherence and student learning

In their analysis of data on the official curricula of countries participating in
the TIMSS, Schmidt et al. (2002, 2005) found that curriculum topics in the
countries that performed the highest in the TIMSS standardised tests are
“sequenced to reflect the structures of the disciplines” (Schmidt et al., 2005,
p.556) of mathematics and science. In other words, these researchers show that
a feature of the official mathematics and science curricula in the highest
performing countries is that they articulate the logical and hierarchical nature
of the disciplinary content from which they are derived. These authors
acknowledge that it is not possible to demonstrate causality in relation to
student learning and this ‘sequencing principle’ (Posner and Strike, 1976),
given the kind of survey data the TIMSS collected. Nevertheless, they believe
that their analysis of the TIMSS curriculum data from high performing
countries strongly supports the view that this form of curricular coherence
“results in greater learning and deeper understanding” (Schmidt et al., 2005,
p.556). 

According to Schmidt et al. (2002, p.19) 

…“to be coherent”, a set of content standards must evolve from particulars (e.g. the meaning

and operations of whole numbers, including simple maths facts and routine computational

procedures associated with whole numbers and fractions) to deeper structures inherent in the

discipline. This deeper structure then serves as a means for connecting the particulars (such

as understanding of the rational number system and its properties). The evolution from

particulars to deeper structures should occur over the school year within a particular grade

and as the student progresses across grades.

Schmidt et al. (2005, p.554) further argue that, for learners to “move beyond
its particulars”, “at some level” the structure of the discipline has to become
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 Mathematics pre- and post-tests were administered at the beginning and end of the third1

term of the academic school year. Achievement gain was measured as the difference

between the pre- and post- tests.

visible to them. They assert that the absence of a clear pattern of subject-
matter coherence, which emerges out of ad hoc topic sequencing, hampers or
slows down learning because learners experience the curriculum as a series of
fragmented and seemingly unrelated components where the parts are
disconnected from the whole. Schmidt et al. (2005, p.554) aver that, when
“the inherent logical structure of the discipline” is made “more visible both to
teachers and students”, the pace of learning is accelerated. However, this does
not imply that there is one single ‘best’ sequence. 

The link between curricular coherence in the intended and enacted curriculum,
and increases in curricular pacing in content coverage is echoed by other
researchers. For example, as far back as 1963, John Carroll (1963, p.726–7)
suggested that “if the quality of instruction is anything less than optimal, it is
possible that the student will need more time to learn the task than he (sic)
would otherwise need.” One of the factors in Carroll’s model of school
learning that affect learner achievement includes the organisation and
presentation of content “to be learned in such a way that the student can learn
it as rapidly and as efficiently as he (sic) is able” (Carroll, 1963, p.726). In an
investigation of opportunity-to-learn in Chicago public schools, the
Consortium on Chicago School Research found that learning in many poor
performing high-poverty schools in the system was constrained by persistent
weak curricular coherence and slow pacing (Smith, Smith and Bryk, 1998). 

We have very little information about the effects of within grade curricular
coherence on learning in the South African context. This article draws on data
from a study (Reeves, 2005) which investigated relationships between
variations in measures of opportunity to learn and gains over the academic
year  in 1001 grade 6 students’ mathematics learning in classrooms in schools1

serving low income communities in the Cape Peninsula in South Africa’s
Western Cape Province. In the study’s regression modelling and hierarchical
linear modelling of opportunity to learn data and learning gains, measures of
within grade curricular coherence per se did not emerge as a direct predictor
variable for gains.

Nevertheless, statistical data exploration suggested that clear logical within
grade content sequencing is associated with greater grade level content
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 Analysis of opportunity to learn data on content coverage and curricular pacing in the2

study showed evidence of very low within grade topic coverage and very slow curricular

pacing across grades 5 and 6. For example, the average coverage of grade 6 level topics

and subtopics in the sample of grade 6 classes was 22%. 

coverage and contributes towards increases in curricular pacing across grades.2

By implication, the Cape Peninsula findings suggest that variations in the
internal coherence of the sequencing of curriculum content over the school
year could partly explain why content coverage and curricular pacing differs
across classrooms. In line with Schmidt’s (2005) and Carroll’s (1963)
assertions, the findings indicate that, if curriculum content is not presented to
learners in ways that are logically and conceptually sequenced and linked, they
may need more time to learn. 

Guidance in South Africa’s curriculum documents with

attaining within grade coherence

Unlike previous apartheid syllabus-based curriculum documents, documents
for South Africa’s first post-apartheid school curriculum, Curriculum 2005
(C2005) (introduced in 1997) did not stipulate the concepts and content
teachers were expected to cover in each grade (DoE, 1997 a, b and c). Instead
documents provided fairly ‘open-ended’ more skills-based outcomes for each
of the three phases of the nine years of General Education (grades 1–9) –
Foundation Phase (grades 1–3), Intermediate Phase (grades 4–6) and Senior
Phase (grades 7–9) (DoE, 1997a, b and c). Essentially schools and teachers
had control over the selection, sequencing or ordering, and pacing of concepts
and content covered within and across grade/s. 

Implicit in the lack of grade level specification in the intended curriculum was
the assumption that teachers, as competent and autonomous professionals,
could and would ensure that all learners achieved the outcomes for each phase
of each learning area (Muller, 2006). Underlying this assumption was the
notion that teachers had strong enough internalised conceptual schema to
ensure that the necessary specialised core knowledge was made available to
learners over each school phase in a way that the structured or conceptual
relations within (and across) the subjects or disciplines were made apparent.
By the late 1990s empirical research began to show that this was a vain
assumption in the South African context.
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Concerns about the implementation of Curriculum 2005 began to surface
largely as a result of research which suggested that the lack of ‘a conceptual
roadmap’ (Taylor, Muller and Vinjevold, 2003, p.133) in curriculum
documents primarily disadvantaged children in schools serving historically
disadvantaged communities (Taylor and Vinjevold, 1999). Evidence suggested
core knowledge that learners needed to succeed at higher levels of education
was not being made available to many learners. Research suggested that it was
poorly trained teachers in schools in low income contexts who were most in
need of guidance regarding the subject knowledge that should be covered
within and across the years of schooling (Muller, 2006).

Subsequent to a 2000 Review Report (Review Committee, 2000), Curriculum
2005 was revised through National Curriculum Statements (RNCS) specific to
each subject area (Department of Education/DoE, 2002). What these revisions
marked was a shift from a model where teachers were expected to make their
own decisions around the selection, sequencing and pacing of content, towards
a relatively more highly specified and structured knowledge-based curriculum
which expressed the skills, concepts and content learners were expected to
learn at each grade level. At the level of official documents, the curriculum for
mathematics was revised through ‘mediating features’ (Fullan, 1982) such as
increased clarity in grade level content and more explicit across grade
progression. In contrast to Curriculum 2005, external control over the rules
regulating the selection, sequencing and pacing of mathematics knowledge
was strengthened through the Revised National Curriculum Statement’s
assessment standards. 

In mathematics, the assessment standards (DoE, 2002) were organised around
five core content areas, namely: Number, operations and relationships;
Patterns, functions and algebra; Space and shape (geometry); Measurement;
and Data handling. Within each of these content areas, the curriculum
provided a number of specified ‘clusters’ of objectives for each grade. For
example, the content area Number, Operation and Relationships for grade 6
learners covered ‘Recognising, classifying and representing numbers’;
‘Application of numbers to problems’; ‘Calculation types involving numbers’;
‘Recognising and using properties of numbers’. For each of these objectives,
the curriculum specified topics to be covered. For example, for the objective
‘Recognising, classifying and representing numbers’, learners were expected
to cover:
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! counting forwards and backwards in decimals; 

! representing and comparing whole numbers to 9-digit numbers; 

! common fractions with different denominators including tenths and
hundreds; 

! common fractions including percentages; 

! decimal fractions to at least two decimal places; 

! 1 in terms of its multiplicative property; 

! multiples of any 2-digit and 3-digit whole number;

! prime numbers to 100; place value of digits in whole numbers to 9-digit
numbers;

! equivalent forms of the rational numbers including common fractions
with 1-digit or 2-digit denominators, decimal fractions to 2 decimal
places, and percentages.

Mathematics teachers were given much clearer signalling of expected within
grade content coverage and across grade curricular sequencing and pacing.
The assessment standards provided an indication to teachers of the ‘total’
mathematics content to be sequenced over each school year. However, the
revised curriculum documents did not show the order in which curriculum
topics and sub-topics were intended to be sequenced and organised within
each grade. Teachers were expected to exercise their own judgment when
deciding on the order in which to cover mathematics content over a single
academic school year.

Support was offered in the Teacher’s Guide for the Development of Learning
Programmes for mathematics (DoE, 2003) with regard to making decision
about within grade sequencing of curriculum content. The guidelines
suggested that attention to the various content areas should be spread across
the year. They suggested that time should not be allocated to each of the five
content areas “on a once a year basis but rather a number of time allocations
per year, as the knowledge and skills developed” in one content area
“complement the knowledge and skills to be developed in another” (DoE,
2003, p.21). The Guide emphasised the conceptual interdependence of various
topics and content areas, for example, by stating “it is, for example, impossible
to study measurement without having an understanding of numbers and
operations involving numbers” (DoE, 2003, p.20). It emphasised that
mathematics 
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is developmental, hierarchical and dependent – learners must first be familiar with and be

able to use positive whole numbers before they can deal with fractions or negative numbers

and these must in turn be internalised before the learner begins to use irrational numbers.

Similarly one cannot study compound events involving probability without having an

understanding of simple events (DoE, 2003, p.20).

Guidelines also stated that sequencing of topics from the different content
areas is “reasonably arbitrary”, and that there is no single best organisation of
a year’s schedule of work (DoE, 2003, p.33). 

The South African school curriculum revision process, aimed at bridging gaps
between policy and practice, has been ongoing, as is reflected in a 2009
national curriculum review (see DoE, 2009), and the more recent drafting of
Curriculum and Assessment Policy Statements (CAPS) for each school subject
(see DoBE, 2011). The Curriculum and Assessment Policy Statements for
mathematics (DoBE, 2011) now provide teachers with sequenced mathematics
content topics to be taught in each term. The documents reiterate that ‘the
order of content is not rigid’ (for example, teachers may need to address any
‘gaps’ in learner knowledge and skills whilst trying to cover the grade level
mathematics). . . “but care must be taken not to teach content areas that
involve measurement before the basic operations such as addition, subtraction,
multiplication and division have been mastered at the required level” (DoBE,
2011, p.18). 

Earlier we alluded to the fact that concern has been expressed about the
increased levels of specificity and guidelines in the Curriculum and
Assessment Policy Statements. A critique is that these increases may bring
about a form ‘bureaucratic accountability’ (Darling-Hammond, 2001 in Wits
Education Policy Unit, 2005) which undermines teachers’ autonomy to
exercise their professional judgement in making pedagogical and curricular
decisions. We believe that, even though the new CAPS documents for
mathematics (DoBE, 2011) provide teachers with sequenced mathematics
content topics to be taught in each term, attention will still need to be paid to
the extent to which curriculum content is coherently presented to learners
within particular school grades. 

Teachers may not implement the CAPS as intended. As Posner and Strike
(1976, p.671) note, other factors such as “teachers’ interests or competencies”,
“time schedules”, and “materials and facilities available” are “powerful
determinants” in the implementation of planned programmes. Teachers’
curricular and pedagogical decisions are influenced by their subject matter
knowledge (SMK), pedagogical content knowledge (PCK), curricular
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knowledge as well as their beliefs about mathematics and years of teaching
experience (Shulman, 1986; Ball, Thames and Phelps, 2008). Teachers may
need to alter the sequencing, for example, when they find they have to adjust
or adapt plans in relation to the knowledge that learners have versus the
knowledge that the CAPS anticipate learners to have.

In the next section we offer a methodology for assessing within grade
curricular coherence in teachers’ implementation of the mathematics
curriculum in different classrooms. The methodology was developed for the
Cape Peninsula study referred to earlier (Reeves, 2005). This study collected
detailed opportunity to learn data from 38 grade 6 and 24 grade 5 classes in a
randomly selected sample of 24 schools serving low income communities in
the Cape Peninsula in the Western Cape Province. 

The data collected included information on the order in which mathematics
topics were covered across the school year in each grade 6 class in 2003. This
data make it possible to analyse what teachers in the sample of schools did
with the discretion available to them when they were expected to exercise their
own judgment in deciding on the order in which to cover mathematics content.
The analysis provides insight into the extent to which in-service teachers are
able to plan and enact a year’s curriculum as a coherent entity.

We start with methods for collecting data on sequencing in the enacted
curriculum, and then discuss the analytical processes and instruments used to
analyse variations in the degree to which mathematics curriculum content is
coherently presented to learners over the school year.

Methods for collecting data on within grade content

sequencing

Rather than relying on an examination of teachers’ intended year plans or
schemes of work, the Cape Peninsula study relied primarily on information
garnered from an examination of written work in learners’ notebooks.
Learners in South Africa are usually asked to write work in their notebooks in
every mathematics lesson. However, in case learners had not actually
completed work in their notebooks in every lesson, at the beginning of the
school year two learners in each selected grade 6 classes were asked to keep
diaries on the daily content of their classroom instruction. 
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The main data collection methods used to re-construct the order in which
learners covered mathematics contents in each class was to map the content
sequence directly from the two most comprehensive or ‘best’ notebooks in
each class. Learners’ reports in the diaries were used as supplementary data
sources. This data collection took place in the last two weeks of each of the
first three terms (of four terms/quarters) of the school year. Obtaining
information each term was considered to be more feasible and reliable or
accurate than ‘once off’ towards the end of the school year. As far as was
possible, in mapping of the content sequence, data collectors tried to record in-
depth information on the topics covered rather than only outlining the broad
topics covered. For example, by recording ‘multiplication of 2-digit by 2-digit
whole numbers’, instead of simply recording ‘multiplication’.

Analytical processes and instruments for measuring

variation in curricular coherence in mathematics over

the school year

Because disciplinary expertise is required to exercise judgment over levels of
curricular coherence, a highly qualified and experienced mathematics teacher,
who had served on the committee that developed the revised National
Curriculum Statement for mathematics, was asked to examine the data
mapping the content sequence for each school class. The expert was asked to
exercise her professional judgement in determining whether learners studied
mathematics topics and sub-topics in an appropriately coherent sequence.

The mathematics expert used the 3-point scale to rate levels of curricular
coherence on the two-dimensional matrix shown on Table 1 below. She was
asked to make an estimation of levels of curricular coherence, firstly by
assessing ‘topic sequence’, and then ‘content area spread’ across the three
school terms. A quantitative rating for curricular coherence in each grade 6
class was obtained by combining the expert’s rating for ‘topic sequence’ and
‘content area spread’.

‘Topic sequence’ is a measure of the extent to which the organisational
sequence in each class: 

(a) reflects the hierarchical and logical progression of mathematics
concepts and procedures. For example, the extent to which content
area topics or concepts covered earlier are “logical prerequisites”
for others that follow, in other words, it is “logically necessary to
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It is important to point out that the mathematics expert was not assessing ‘content
3

coverage’ (variations in the overall number of mathematics topics and sub-topics covered

during the year) or ‘content emphasis’ (variations in the amount of time or number of

lesson periods devoted to various topics). She was not assessing grade level alignment of

the topics with curriculum documents here. For a discussion of the methodological

procedures used for collecting and analysing data on other dimensions of opportunity to

learn see Reeves and Muller, 2005.

understand” the earlier concept or topic in order to understand the
more complex concepts or topics that come later (Posner and Strike,
1976, p.675); and 

(b) conceptually develops and creates connectivity within the subject.
For example, the extent to which the sequence is “structured in
manner consistent with the way” in which content area topics or
concepts are related or connected to one another (Posner and
Strike, 1976, p.673).

The idea behind rating ‘content area spread’ in assessing the level of
curricular coherence is to include a measure of the extent to which teachers’
sequencing of the year’s work incorporates all the content areas.  To represent3

a composite mathematics curriculum, a year’s schedule of work needs to cover
all five content areas in the curriculum (Number, Patterns, Geometry,
Measurement and Data handling). If only one or some of the five content areas
are presented, (for example, if the majority of topics are related to one or two
of the content areas and other content areas are omitted), the schedule of work
does not represent a composite mathematics curriculum. 

A key challenge for mathematics teachers is that, because they need to
structure their schedule of work so that “the knowledge and skills developed”
in one content area “complement the knowledge and skills to be developed in
another” content area, each content area needs to be presented not just “on a
once a year basis” but a number of times across the year (DoE, 2003, p.21). In
other words, yearly programmes of work need to reflect connectivity and co-
ordination not only between topics within a single content area, but also
between topics in different content areas. 
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Table 1: Topic sequence and content area spread matrix used to rate levels
of curricular coherence

1 2 3

Topic sequence Topic sequence

mostly does not

reflect any sequential

development of maths

concepts or

procedures or it is

difficult to discern

conceptual

development. Does

not reflect links

between sequential

topics.

Topic sequence

reflects sequential

development of some

maths concepts or

procedures; however,

links between

sequential topics are

not always clear. (For

example, whole-

number work and

fraction-work is

mixed up, or lots of

operations with whole

numbers are

presented before

place value and

counting, or

operations with whole

numbers do not

always progress from

smaller numbers to

bigger numbers). 

Topic sequence

reflects gradual and

sequential

development of most

maths concepts or

procedures with

isolated exceptions.

(For example, whole-

number-work

progresses from

number concept

development such as

place value and

counting, factors and

multiples to

operations with

numbers from smaller

numbers to bigger

numbers. Or, fraction

and decimal work

progresses from

recognition and

representation to

equivalence, then

operations). Content

reflects links between

sequential topics (for

example, fractions

and decimals).

Content area spread Content coverage

shows very little

spread of the five

content areas across

the three (of four)

school terms. (For

example, only up to

three or four of the

five content areas

(each with an array of

topics and sub-topics)

dealt with three-

quarters of the way

through the school

year; only one or two

content areas are dealt

with more than once.

Content coverage

shows some spread of

content areas across

the three (of four)

school terms. (For

example, in most

terms only one or two

content areas are

covered; up to four

content areas dealt

with three-quarters of

the way through the

year; only three

content areas are dealt

with more than once.

Content coverage

shows adequate

spread of content

areas across the three

(of four) school

terms. For example,

first term, more than

one content area; 2nd

and 3  terms morerd

than two content

areas; all five content

areas dealt with so

far; at least four

content areas are dealt

with more than once.
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In distinguishing between the different levels, the mathematics expert was
asked to bear in mind that the study was examining ‘naturally occurring’
variations in the variable of interest. A major constraint with investigating
naturally occurring differences, as opposed to investigations that involve
focused intervention, is that not even the best classes are likely to be exposed
to optimal levels of the variables of interest (Rowan et al., 2002). To
demonstrate how variation in curricular coherence, was assessed, the expert’s
coding of the data from three examples, representative of the data collected,
are provided. The mathematics expert used her knowledge of disciplinary
principles to assess curricular coherence. 

To make the evaluative criteria more explicit, an analysis is provided in the
second column of each of the three illustrative examples. The analysis is based
on the disciplinary principles which guide topic sequencing and content area
spread: logical progression, conceptual development and connectivity as well
as coverage of content areas over the year and the frequency of occurrence.

The mathematics expert assessed Example 1 (Table 2 below) as showing poor
topic sequencing (rating 1) and poor content area spread (rating 1). In the first
three terms the teacher only dealt with one content area (Number, operations
and relationships). The expert could discern ‘little conceptual development’ in
the sequencing of content ‘for whole number’ and identified ‘gaps in sequence
for fractions’. 
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Table 2: Example 1

Example 1 Analysis

First term 

Number

Addition and subtraction of up to 4-digit

numbers

Place value of up to 4 digit numbers

Long division

Second term 

Number

Proper fractions

Addition and subtraction of fractions with

same denominators

Addition and subtraction of fractions with

different denominators

Third term 

Number

Common fractions with denominators that are

multiples of each other and with 1- or 2- digit

denominators

Addition of fractions with the same

denominator 

Addition of fractions with different

denominators

Subtraction of fractions with the same

denominator

Subtraction of fractions with different

denominators

Conversion of mixed numbers to improper

fractions

Identifying fractions as proper, improper,

mixed numbers

Addition of fractions with different

denominators

Subtraction of fractions with different

denominators

Multiplication of fractions

Topic sequencing is weak as there is no

evidence of consistent, logical progression or

conceptual development throughout the three

terms. For example, in the first term, the

content is organised without due consideration

of the progressive and hierarchical structure of

mathematics. Place value, which is the key to

the understanding of whole number, lays the

foundation for addition and subtraction of

numbers and should conceptually precede

number operations. Learners need to

experience multiplication and division as

inverse operations to help transform more

complicated problems and to experience the

inter-connectivity between operations. There is

no evidence of this, and the inclusion of

division in the first term without linkage to

multiplication creates isolated and fragmented

understanding of mathematics.

Fractions appear to be a mix of identifying and

converting between different types of fractions

and operations with fractions. Learners need to

be able to add and subtract fractions with same

dominators before they can move to operating

with fractions with different denominators. The

development of a logical mathematical

conceptual plan is lacking in this example of

data mapping of content.

Only one of five content areas, Number,

operations and relationships is dealt with

throughout the first three terms of the year.

There is no evidence of Patterns, functions and

algebra; Space and shape; Measurement and

Data handling content areas which indicate

poor spread. Some mathematical content is

revisited during terms two and three, but it is

limited exclusively to fractions.  

The expert assessed the sequencing of topics in Example 2 (Table 3 below) as
not reflecting conceptual development – no obvious links between consecutive
topics was evident (rating 1). Example 2 was deemed to reflect relatively good
content area spread (rating 3). Although very little of each content area was
dealt with each time, Number, operations and relationships, Patterns,
functions and algebra, Space and shape and Measurement were repeated, and
Data handling was presented once.



Reeves and McAuliffe: Is curricular incoherence slowing down. . .         25

Table 3: Example 2

Example 2 Analysis

First term

Shape and space 

Rectangular prisms, faces

Number

8 x tables and 9 x tables and 12 x tables

Addition – 2-digit numbers

Addition up to 3-digit numbers and subtraction

Addition – single digit 

Patterns, functions, algebra

Number patterns – 3- and 4-digit numbers

Number

Multiplication up to 2-digit numbers 

Measurement

Conversions – km to m and ml to l and kg to g

Number

Recognising mathematics in newspapers 

Recognising mathematics in shopping and on

waste products

Second term

Data handling

Bar graphs

Line graphs

Space and shape

Describing, sorting and comparing geometrical

properties of 3 D objects according to 

  i) shapes

 ii) number of sides

iii) length of sides

Number

Addition of rand and cents

Third term

Patterns, functions and algebra

Fibonacci numbers – Fibonacci sequence -

investigating numeric and geometric patterns

Measurement

Length using mm, cm, km

Shape, space (geometry)

Right angles and angles smaller than and greater

than right angles

Topics sequencing is weak as the data mapping

of content does not reflect logical, conceptual

mathematical development. For example, the

content area Numbers starts with 2-digit

addition and leads to 3-digit addition but then

returns to single digit addition. There is weak

evidence of the hierarchical structure of

mathematics which involves moving

progressively over time towards a deeper

understanding of concepts. Many topics are

superficially covered and lack conceptual

depth. For example, in the first term, Shape

and space includes the faces of rectangular

prisms while Patterns, functions and algebra is

solely comprised of number patterns with 3-

and 4- digit numbers. There is very little

connectivity between topics and the data

mapping of content appears to be a random list

of unrelated mathematics topics. Addition and

subtraction of numbers as inverse operations is

ignored and many topics are simply excluded,

such as subtraction and division of whole

numbers, common fractions, decimals and 2D

shape and space.

The spread of content areas appears to be

relatively good: four content areas in the first

term, three in the second term and three in the

third. However, there is too little mathematical

content and a lack of conceptual development

within the topics. Number patterns are

mentioned in the first term and again in the

third term but there are no geometric patterns

or number sentences. 

The expert assessed the sequencing of the topics covered in Example 3 (Table
4 below) as ‘relatively logical’ and ‘mostly’ reflecting conceptual
development (rating 3). For example, ‘fractions links to decimals’, and
‘decimals links to measurement’. However, Example 3 was assessed as limited
in terms of spread of content areas (rating 1). Only Number, operations and
relationships was repeated. Measurement and Data handling were presented
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once. Patterns, functions and algebra was touched on only in terms of
counting, whilst Space and shape was not dealt with at all.

Table 4: Example 3

Example 3 Analysis

First term

Number

Whole numbers – Counting in 2s, 3s, 5s, 10s,

and 100s

Addition and subtraction

Comparing whole numbers - 4-digit and 6-digit

numbers, odd and even numbers, place value 4-

digit numbers

Dates (no calculations/conversions)

Adding and subtracting in columns – 4- and 5-

digits

Multiple operations of whole numbers 

Multiplication – tables up to 12 x 12 – 2-digit by

2-digit, and 3-digit by 2-digit

Division – 3-digit by 1-digit, 3-digit by 2-digit,

remainders.

Second term 

Number

Multiplication 2- by 2-digit, and 3- by 2-digit

Distributive properties with whole numbers

Division 3- by 1-digit, and 3- by 2-digit whole

numbers

Division with remainders

Data handling

Pictographs (many to one correspondence) -

Population data

Pie graphs - Re-cycling data

Number

Fractions – halves and quarters, third of 18

Equivalent fractions and improper fractions

Mixed numbers

Addition and subtraction of fractions (including

mixed numbers

Third term 

Number

Addition of fractions with the same

denominators and with denominators that are

3multiples of each other for example ¼ + /2

Addition of fractions with the same

denominators and with denominators that are

multiples of each other and mixed numbers

The sequencing of topics in the content area

Number, operations and relationships shows

logical progression and conceptual depth

especially in whole and rational number. There

is good linkage between addition, subtraction,

multiplication and division of whole numbers

and evidence of developmental stages within the

number ranges. The topic of fractions includes

recognition, equivalence as well as addition and

subtraction of fractions and a logical

connectivity to decimal fractions. However,

there is an over-emphasis on whole and rational

number at the expense of the other topics and

opportunities to create further developmental

links have been lost. The inclusion of Data

handling in the second term has no logical

relevance, though in the third term,

Measurement following decimals gives learners

the opportunity to use their decimal knowledge

in the context of measurement.

There is poor spread of the five mathematical

content areas: mostly Number, operations and

relationships is presented in each of the three

terms, with some Measurement and Data

handling but no Patterns, functions and algebra

(except for counting), or Space and shape. 
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Subtraction of fractions with the same

denominators and with denominators that are

multiples of each other

Dividing whole numbers by fractions, for

5example /  of 15 3

Representing fractions and converting to

decimal fractions

Converting to decimals by division as in 2

100÷100 = /  = 0,02 Place value of decimals for2

example 0,12 is 0 ones, 1 tenths 2 hundredths

etc. (up to 3 decimal places)

Building up and breaking down decimal

fractions using fractions with numerators that

are multiples of 10 

Addition of decimal fractions

Measurement

Capacity – litres and ml

Mass – kg and g

Decimal fractions in the context of capacity and

mass

Topic sequencing in only 8 per cent of the 38 grade 6 classes was judged as
reflecting appropriate sequential development of mathematics concepts or
procedures (although not necessarily optimal levels). In 76 per cent of the
classes topic sequencing was judged as mostly not reflecting logical
conceptual development. Sequencing in the remaining 16 per cent of the
classes fell in-between these two categories, and reflected some but limited
sequential development. 

An analysis of the percentage of the grade 6 classes that the mathematics
expert assessed at the different levels of spread of content areas showed that
only 50 per cent of the grade 6 classes showed adequate spread of content
areas across the three terms. In 24 per cent of the classes curricular spread was
deemed to show no or very little spread of content areas across the three terms.
26 per cent of the classes showed some but insufficient spread of content areas
across the three terms. 

What the analysis also revealed is that the sample of learners’ experience of
within grade curricular coherence was uneven. The spread of content areas
across the first three terms (of four terms) in only half of the grade 6 classes
was deemed generally adequate. The order in which mathematics topics were
covered across the school year for three quarters of the grade 6 classes was
judged as not reflecting coherent development of mathematics concepts, skills
or procedures. Although there were variations in content area spread and the
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order in which topics were covered differed across different grade 6 classes,
mathematics in the majority of the classes studied did not reflect sequential
links and developmental complexity across all five content areas. For most
learners mathematics was not presented in a coherent and composite manner
over the school year.

When data collection for the Cape Peninsula study took place in 2003, the
National Curriculum Statements, although officially adopted, were not yet in
use at the grade 5 and 6 levels. A more recent study by Carnoy, Chisholm,
Addy, Arends, Baloyi, Irving, Raab, Reeves, Sapire  and Sorto (2011b)
collected similar opportunity to learn information from a sample of over sixty
grade 6 low socio-economic classrooms in the North West province of South
Africa in 2009. In 2009 the National Curriculum Statements were supposed to
be implemented at the grade 6 level. Despite the increased clarity in grade
level content in the official curriculum documents in use, data from the
Carnoy et al’s study similarly show that the order in which teachers in the
North-West sample covered mathematics content over the year in 2009,
mostly does not reflect curricular coherence. The majority of the teachers in
the North-West sample did not appear to have a clear sense of how to structure
their coverage of topics over the year ‘in the disciplinary sense’ (Schmidt et
al., 2005). 

Our analysis of the manner in which the sample of teachers presented
curriculum content to learners within a school grade provides insight into the
knowledge teachers need if they are to exercise professional judgement in
putting topics and sub-topics together in a coherent sequence. In the
discussion which follows, we consider some of the implications of our data
analysis for mathematics teacher education and development. 

Discussion

As we have noted, the new CAPS documents for mathematics (DoBE, 2011)
provide teachers with sequenced mathematics content topics to be taught in
each term. This form of guidance is useful particularly for teachers of
mathematics who are not well-specialised in the subject. We argue that
teachers also need to understand the importance of attaining coherence in the
curriculum they make available to their learners over the school year. They
need to be aware of the role logical within grade sequencing plays in
facilitating content coverage and curricular pacing. If teachers do not
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understand this, they may not adhere to the plans, or they may adjust or adapt
them inappropriately, for example, when addressing gaps in learner
knowledge.

Other moves on the part of the Department of Basic Education, aimed at
bridging gaps between policy and practice, include the provisioning of
workbooks and the introduction of a centralised national catalogue of
approved textbooks for General Education (grades 1–9). Every learner is to
have his/her own textbook for each of his/her subjects. We suggest that, for
teachers to use carefully sequenced workbooks and textbooks as they are
intended, they need to understand how well-structured workbooks and
textbooks can be used to help bring coherence into implementation of their
mathematics work schedules. They need to be shown how such material
systematically organises and sequences content and concepts to consolidate
and build new knowledge on the firm foundations of earlier linked knowledge. 

Authors such as Darling-Hammond (2001), Morrow (1989); Hoyle and John
(1995) (in Wits Education Policy Unit, 2005, p.11) contend that knowledge
should form the basis for professional action. The data presented in this article
suggests that many teachers do not have the necessary knowledge to exercise
professional judgement in putting topics and sub-topics together in a coherent
sequence. We argue that, for teachers to become more autonomous and plan,
enact, and responsively adapt a year’s curriculum as a coherent entity
underpinned by internal disciplinary principles, they first need to recognise
that mathematics is not simply a collection of isolated and unrelated topics and
sub-topics. 

If, “a coherent curriculum is one whose parts are unified and connected by a
sense of the whole” (Beane, 1995: abstract), then teachers also need to have a
sense of the curriculum as a whole to ensure coherence in their programme of
work over a school year. They need to develop an understanding of the
principles underpinning the inherent structure of the discipline “from which
the subject-matter derives” (in this case, mathematics) (Schmidt et al., 2005,
p.529). They need to have a strong enough hold over the school subject to be
able to comprehend “inter-linkages amongst the various topics” and sub-topics
(Sharma and Ahluwalia, 2010, p.94). 

For Redish (2003 in Sharma and Ahluwalia, 2010, p.94) and others in the field
of physics “the key issue in bringing coherence through organisation of
knowledge in more systematic and logically connected ways, is construction
of a cognitive network”, or a relational mental map of the subject field.
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Sharma and Ahluwalia (2010, p.96) suggest a strategy for getting teachers to
create “a visual survey of conceptually connected material” where they
“explore all the possible alternative paths to reach and link one part of the
subject to the other”. They present what they term “an architectural view
point” and introduce the notion of “an image-ability map” which, they say
allows students “to gain an overview of a domain of knowledge” and an
understanding of “the intra-connectivity” of topics and concepts (Sharma and
Ahluwalia, 2010, p.95). Such an approach not only serves as a cognitive
resource which teachers could draw on later, but also acts as a “pictorial
reminder” that mathematics (or in their case physics) as a subject “has a well-
knit hierarchical structure” (Sharma and Ahluwalia, 2010, p.96).

We suggest that there is also the potential for the CAPS documents to be used
as “an instrument to empower teachers’ rather than ‘as an instrument to
control teacher’s work” (Wits Education Policy Unit, 2005, p.7). Mathematics
experts could use the sequenced mathematics content topics to be taught in
each term, along with other exemplars of ‘ideal’ sequencing of mathematics
content within each school year, as resources for helping teachers to
understand the principles that generate the exemplars, and for making the logic
underpinning the coherent presentation of within grade level topics and sub-
topics in mathematics explicit.

Conclusion

In this article we refer to the disciplinary principles which guide curricular
coherence within the grade 6 mathematics curriculum over a single academic
year. We argue that these principles involve issues of content area spread and
topic sequencing. We have selected three principles as the essential
underpinnings of the concept of curricular coherence within this context
(Schmidt et al., 2005, p.527–530): Sequencing of curricular content that
reflects

1. Conceptual progression and the logical and hierarchical structure of
mathematics [for example, content area topics or concepts covered
earlier are “logical prerequisites” for others that follow (Posner and
Strike, 1976, p.675)]

2. Connectivity and co-ordination between topics and concepts in the
different content areas within the subject [for example, sequencing that is
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“structured in a manner consistent with the way” in which topics or
concepts are related or connected to one another (Posner and Strike,
1976, p.673)]

3. A composite mathematics curriculum covering all five content areas of
the curriculum (Number, operations and relationships; Patterns,
functions and algebra; Space and shape (geometry); Measurement; and
Data handling).

We contend that, in order to organise and present all grade level content area
topics in a coherent sequence over the school year, mathematics teachers need
to develop an understanding of the hierarchical structure of school
mathematics, and of moving progressively over time towards the
understanding of the deeper structure of mathematics. They need to have a
sense of the mathematics curriculum as a whole, and a strong enough
knowledge of the subject to be able to comprehend connections between the
different topics in the different content areas studied within the subject.
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